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FOREWORD

Many members of the staff of the Aeronomy and Meteorology Division
contributed to the success of the TIROS I1] scanning radiometer experiment.
Valuable contributions in the areas of laboratory measurements of materials
and computer programming for data processing came from the Meteorological
Satellite Laboratory, U. S. Weather Bureau, whose efforts are gratefully
acknowledged.

The task of assembling the information contained in this manual into
written form suitable for publication was largely accomplished by Mrs.
I. Persano Strange and Mr. Robert Hite, Aeronomy and Meteorology Division,
whose efforts are hereby acknowledged.

A companion volume, the “TIROS III Radiation Data Catalog,” will be
published approximately concurrently with this manual.

ABSTRACT

The NASA TIROS III Meteorological Satellite contains a five-channel
medium resolution scanning radiometer. Two of the channels of this instrument
are sensitive to reflected solar radiation and the remaining three respond to
emitted radiation from the earth and its atmosphere. The three thermal
channels are calibrated in terms of equivalent black-body temperatures, and
the visible channels in terms of effective radiant emittances. The calibration
data, along with orbital and attitude data and the radiation data from the
satellite, were incorporated in a computer program for an IBM 7090 which was
used to produce the “Final Meteorological Radiation Tape (Binary).”

After launch, the radiometer displayed the same degradation charae-
teristics as did its predecessor in TIROS II. The onset of degradation, beginning
at different time periods after launch for the different channels, results in a
departure of the data from the pre-launch laboratory calibration. Since the
cause of the problem has not been pinpointed, no changes were made on the
TIROS III radiometer calibration. This matter still is being studied at the
Goddard Space Flight Center.

Before serious work with the TIROS III radiation data is attempted, an
understanding of the radiometer, its calibration, and the problems encountered
in the experiment is essential. The instrumentation design, development work,
and the calibrations herein described were performed by the Goddard Space
Flight Center staff, whereas the computer and programming efforts were
carried out jointly by the Meteorological Satellite Laboratory staff, U. S.
Weather Bureau, and the Goddard Space Flight Center staff.

In this manual, the radiometer and its calibration, data processing, and
degradation and other possible sources of error are discussed.
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I. INTRODUCTION

1.1 The TIROS III Program!'?®:3:*

The NASA TIROS III Meteorological Satellite
was injected into orbit on July 12, 1961. Its mean
orbital characteristics are listed in Table I.

TABLE 1
Perigee Altitude ___ . 460.1 st. mi.
Apogee Altitude_ ______ 506.8 st. mi.
Inclination_____ . _. 47.90°
Anomalistic Period ... 100.41 min.

The instrumentation flown in the satellite in-
cludes two television cameras and three radio-
meters. The radiometers measure emitted and
reflected solar radiation from the earth and its
atmosphere. One is a wide field non-scanning
instrument having two detectors, one white and
the other black. A second radiometer is the Uni-
versity of Wiseonsin’s heat balance experiment.
This manual is concerned only with the third
radiation measuring device, the five-channel
medium resolution scanning radiometer.

1.2 Geographic Limitations of Data Utilization

Before attempting to interpret the data con-
tained on the “Final Meteorological Radiation
Tape (Binary),” careful consideration should be
given to all points discussed in this manual. For
an understanding of the significance of the radiant
emittance values or equivalent blackbody temper-
atures, a familiarity with the principle of the
radiometer, its peculiarities, and the method of
calibration is essential.

Care should be exercised in the use of the corre-
lation of the radiation data with geographic loca-
tion, such as attempted comparisons with synoptic
situations. Uncertainties in attitude lead to an
estimated maximum error of 1° to 2° in great
circle arc. At a nadir angle of 0°, a 2° error would
result in a position error on the surface of the
earth of less than 20 miles. At a nadir angle of 60°,
a 2° error corresponds to an error of more than
200 miles. It should be emphasized that such
errors result in distortion as well as translation,
and a simple linear shift of the data is in general
not sufficlent for correction.s:6.7.8:°

In addition to attitude errors, time errors also
contribute to difficulties in geographic correlation.
The principal sources of time errors are mistakes
at the ground station in transmission of the end-of-
tape pulse, erroneous sensing by the analog-to-
digital converter of the end-of-tape pulse, and the
necessity of counting through noise on the relative
satellite clock frequency. These errors are generally
estimated to be less than ten seconds in TIROS
I1I, much less than in TIROS II. However, users
are cautioned to be watchful for those rare cases
where there still might be larger errors of the order
of one minute or more. Time errors also result in
distortion as well as translation.

1.3 Description of the Principle of the
Radiometer'*

The principle of the radiometer is illustrated in
Fig. 1 where the components of a single channel
are pictured. The fields of view of the channels are
approximately coincident, each being about five
degrees wide at the half-power points of the re-
sponse. The optical axis of each channel is bi-
directional 180° apart. As the half-aluminized,
half-black chopper disk rotates, radiation from
first one direction and then the other reaches the
detector. This results in a chopped output which is
amplified and rectified, giving a DC signal which
(neglecting electronic noise and possible optical
imbalance) is theoretically proportional to the
difference in energy flux viewed in the two
directions.

The radiometer is mounted in the satellite such
that the optical axes are inclined 45° to the satel-
lite spin axis. (The viewing directions are desig-
nated “wall” and “floor” according to their
orientation in the satellite.) When one optic views
the earth, the other views outer space. Thus,
the outer space radiation level (assumed to be
zero) can be used as a reference. When both
optics are viewing outer space, the resultant
signal is designated as the “space viewed level.”
Theoretically, this signal should be zero, but in
reality is not, due to electronic noise and any
initial optical imbalance, plus subsequent changes
in balance caused by the degradation of certain
channels after varying time periods in orbit, thus
altering the laboratory calibration. As the satel-
lite rotates on its axis, the radiometer scan pattern
on the surface of the earth is defined by the inter-
section of a 45° half-angle cone and a sphere. This
pattern ranges from a circle when the spin vector is
parallel to the orbital radius vector, to two hyper-
bola-like branches when the spin vector is per-
pendicular to the radius vector. The orbital motion
of the satellite provides the scan advance. Varia-
tions in the amplitude of the radiometer signal are
converted into subcarrier frequency deviations
and stored by means of a miniature magnetic tape
recorder. When the satellite is interrogated while
passing over a Command and Data Acquisition
Station, the information is telemetered back to
earth where it is recorded on magnetic tape. The
further processing of these magnetic tapes is dis-
cussed in Section III of this manual.

II. CALIBRATION

Before considering the calibration flow sequence,
it is necessary to define and discuss two quantities
which are fundamental to the calibration. These
are the effective spectral response and the effective
radiant emittance.



2.1 Effective Spectral Response

'2.1.1 Definition. The effective spectral re-
sponse, ¢,, is defined as

‘bx:R’x‘(R‘;\,“Rg)fox (1)

In the actual computation of ¢,, either the
expression
¢A=R§(1“Rx)f)\ (2)

or~the expression
b =RI(R)— A (3)

was used. The use of the factor (1—R,) assumes
that the reflectivity of the aluminized half of the
chopper disk is independent of wavelength. In
both equations (2) and (3), it is assumed that the
detector absorptivity is independent of wave-
length. However, recent laboratory measurements
using sample bolometers of the type used in the
radiometer indicate that the spectral absorptivity
of the detectors is flat between 0.25 and 2.0
microns, but varies somewhat and generally
decreases beyond 2.0 microns.

The materials used in the lens and filter of each
channel are given in Tahle II. The effective
spectral response for each channel is given in
{?Igls 2 through 6 and in Tables III, IV, V, VI and

2.1.2  Discussion. The quantity R, for chan-
nels 2 and 4 was taken from measurements per-
formed at the Meteorological Satellite Laboratory
of the Weather Bureau, using a Beckman IR-7
spectrophotometer. The determinations were made
on two different chopper disks taken from a radio-
meter similar to that flown in TIROS III. An
average of the two was taken and used for channels
2 and 4. The value (RY —R?) was measured with
the TIROS III chopper disks by the Barnes
Engineering Company for channels 1, 3 and 5.

A discussion of the final values of ¢, derived for
each channel follows:

CHANNEL 1

The function f, was taken from Barnes Engi-
neering Company measurements made on the
channel 1 filter of the TIROS III radiometer in
combination with plane samples of the lens ele-
ments. The hemispherical germanium immersion
lens used in this channel was found to have
wavelength-independent transmission in this spee-
tral region, but this constant was incorporated
into the f, funetion. The function R was taken
from a Barnes measurement on a good \/4
front-surfaced aluminum mirror.

CHANNEL 2

The filter function was taken from measure-
ments made on a similar filter by the Meteoro-
logical Satellite Laboratory of the Weather
Bureau. The transmission of the germanium
doublet lens was obtained by squaring a measure-
ment made by Barnes on a plane sample of lens
material having a thickness equivalent to the
mean thickness of one of the lens elements. The
product of filter-lens combination was used as
the function f,. The function R was taken from
a Barnes measurement on a good A/4 front-sur-
faced aluminum mirror. Beyond 16y, due to lack
of measurements, the reflectivity was assumed to
be constant at the 164 value.

CHANNEL 3

Barnes measurements were used for the sap-
phire (A1,0;) lens. For the barium fluoride (BaF,)
lens, the transmissivity was computed from the
index of refraction of BaF';, measured at varying
wavelengths by the University of Michigan.!o

Assuming that the barium fluoride provided

reflection losses only, the reflectivity was deter-
mined by the equation.

N,—1Y?

where N, is the spectral index of refraction, and the
transmissivity was determined by the equation

n=>1-—R,) (%)

The function f(A) was obtained from the product
of the transmissivities of the two lenses.

The function Ry was taken from an average of
measurements taken by Barnes on the two re-
flecting surfaces of the prisms from radiometers
102A and 103A and from a Barnes measurement
on a good /4 front-surfaced aluminum mirror.

R, =

CHANNEL 4

The funection f, was taken from measurements
made by the Eastman Kodak Company on a
sample InSb filter. The transmission of the
KRS-5 lens was found to be constant throughout
the entire 7.4 to 32.6u range and was not in-
cluded in the transmission. The function RY was
taken from a Barnes measurement on a good \/4
front-surfaced aluminum mirror. Beyond 164,
due to lack of measurements, the reflectivity was
assumed to be constant at the 164 value.

CHANNEL 5

Barnes measurements were used for the sap-
phire (45,0;) lens.-For the silicon dioxide (S70,)



lens, the transmissivity was computed from the
index of refraction of S¢0,°, in the same manner
as the transmissivity was computed for the
BaF, lens in channel 3. The filter measurements
for this channel were made by Barnes. The
funetion f(») was obtained from the products of
the transmissivities of the two lenses and the
filter.

The function R} was taken from an average of
measurements taken by Barnes on the two re-
flecting surfaces of the prisms from radiometers
102A and 103A and from a Barnes measurement
on a good \/4 front-surfaced aluminum mirror.

2.2 Effective Radiant Emaittance

2.2.1 Definition. The effective radiant emit-
tance of a target, W, for channels 1, 2 and 4 is
defined as that portion of blackbody radiant
emittance which would be detected by a sensor
with a spectral response ¢, when the field of view
is completely filled. This may be written as

W=f0WX(T) b d A (6)

The effective radiant emittance for channels
3 and 5 is defined by eq. (9) below.

222 Wwvs. T,.. The Wyvs. T,, functions in
Tables VIII, IX, and X and Figs. 7 through 9
were obtained using equation (6). The integration
necessary in the computation of each point was
carried out using an LGP-30 electronic computer.

2.3 Flow Sequence

The radiation data flow sequence is shown in
Fig. 10. The sequence from satellite through
ground station is illustrated in Fig. 10(a). When
a blackbody temperature Tszis viewed by one
side of the radiometer while the other side views
outer space, and with a radiometer housing tem-
perature, T, a radiometer output voltage V., ,
1s obtained. This signal is fed into a voltage
controlled oscillator which produces an output
frequency F. when the oscillator electronics
temperature is T,.

At the ground station the frequency Fg., now
increased by a factor of 30, is fed into a demodu-
lator, the output of which enters an analog-to-
digital converter. The resulting digital number D
and the temperature T¢, which is also telemetered
from the satellite, are used to obtain the value
T, for channels 1, 2 and 4 and the value w
for channels 8 and 5 from the calibration data as
indicated below.

2.4 Relation Between Electronics and Eadiometer
Temperatures

The relation between the radiometer output
voltage, Vrean, and the frequency output of the
voltage controlled oscillator, Fg., depends on the
electronics temperature, T, as shown sche-

matically in Fig. 10(c). Algebracially, the relation
may be expressed as

FSC =f(VRAD)TE) (7)

However, it may be seen from the five-channel
subearrier oscillator curves, Figs. 11-15, that
output frequenecy is relatively independent of T,
for small variations in T',. Thus, it was assumed
that if T, did not differ appreciably from T,
the final calibration of T, or W vs. F. could be
carried out by keeping T, equal to T, and con-
sidering T, as the variable parameter, as shown
schematically in Fig. 10(c).

The validity of the TIROS III calibration and
its effect on the accuracy of the results was
checked using the flight data for T, and T..
The temperature comparison of T, and T for
TIROS III is shown in Fig. 16. It is seen from the
graph that the difference between T, and T did
not exceed 5.5°C. Using Figs. 11-15 and Figs.
17-46, it was determined that for a 5.5°C tempera-
ture difference between T, and T, the maximum
average temperature difference in the thermal
channels is 0.8°K, while the maximum average
difference in effective radiant emittances in the
visible channels, expressed in percentage of one
solar constant radiated from a diffuse source, is
0.29, as seen in Table XI.

2.5 Space Viewed Level

The TIROS II calibration method assumed
that the radiometer was in perfect balance at all
radiometer housing temperatures. However, from
the TIROS II flight data, the signal obtained when
both optics viewed outer space evidenced a vari-
able property, seemingly dependent upon the
radiometer housing temperature. These results
were verified in the laboratory by simulating outer
space conditions with two targets at liquid
nitrogen temperatures. (The signal obtained at
liquid nitrogen temperatures is so small that it
may be compared with the very low “space”
temperature.)

A new calibration procedure was adapted to
account for this space level shift.,

2.6 Target Blackbody Temperature, T, and
Target Effective Radiant Emittance, W, vs.
Dugital Number, D

Unlike the TIROS II ealibration, it was possible
to calibrate the TIROS III radiometer and its
electronics data storage package as a system. The
radiometer was placed in a vacuum chamber,

while the electronics canister was placed in a

thermally-insulated environmental chamber.

2.6.1 Thermal Channels 1, 2 and 4. Two
laboratory blackbody targets, placed in a con-
tainer so that liquid or gaseous nitrogen could
flow around them, were used in the calibration
procedure.



At a certain radiometer housing temperature,
T., regulated by the temperature of alcohol
flowing through tubes in thermal contact with the
radiometer housing in the vacuum chamber,
liquid nitrogen at —196°C was pumped through
the tubes in one target while the temperature of
the nitrogen flowing through tubes in the other
target was varied from -—196°C to about + 30°C.

This procedure was carried out at eight different
radiometer housing temperatures (0°, 7°, 12°, 18°,
23.5°, 30°, 37° and 45°C) while viewing the warm
target respectively through the wall and floor
sides of the radiometer. The temperatures of each
target were recorded by means of thermocouples.
Using the formula

127
D=%5F (8)

shown schematically in Fig. 10(d), a curve of Ty,
vs. D was constructed for each channel on both
wall and floor sides, at varying values of T,
(Figs. 17-28 and 35-40) If the quantity W is de-
sired, it may be determined from the W vs. Tys
graphs for each channel. (Figs. 7, 8 and 9). The
complete calibration is shown schematically in
Fig. 47(a).

2.6.2 Visitble Channels 3 and 5. A tungsten
filament lamp calibrated by the Bureau of
Standards was used in the calibration procedure.
Radiation from the lamp was diffusely reflected
from a sheet of white paper of known spectral
reflectivity. The output signal of each channel was
read with the illuminated paper normal to rays
from the lamp and completely filling one field of
view of the radiometer. The other field of view
was covered with black tape. In order to obtain
more than one point per calibration, the white
paper was placed at different distances from the
tungsten filament source lamp. The effective
radiant emittance was computed using:

W_ COS'Yf J)\ T,\ d) d)\ (9)

A curve of W vs. voltage, V, was then con-
structed, with T being the ambient temperature
of the room in which the calibration was made.
In order to construct W vs. Fsc curves at various
values of T, it was necessary to make additional
measurements in vacuum where T'¢ could be con-
trolled. Two targets consisting of diffusers illumi-
nated by light bulbs, one target for each of the
wall and floor sides, were used for both channels
in this ealibration. The voltages could be regu-
lated. A certain range of voltages was selected and
measurements of the various values of T, were
made of each voltage, recording correspondmg
radiometer voltage and output frequency at each
level. Measurements were made by illuminating

alternately both wall and floor sides, keeping
the lights off on the side that was to simulate
space viewing. In order to correlate the vacuum
measurements with the tungsten-filament lamp
source measurements, it was necessary to make
one set of vacuum measurements at the same TC
that existed for the air measurements. By relating
bulb voltage levels to W at the air measurement
T., W vs. Fsc curves were constructed for the
same eight T, values as used in the thermal
channels (Figs. 29-34 and 41-46). A comparison
calibration was made using rays from the mid-day
sun as the visible light source, and the results
agreed well within 59, of the tungsten lamp
calibration.

In order to calculate the reflectance (loosely
“albedo”) of a spot on earth viewed by the
radiometer, one must know W* the particular
value of W which would be measured if the spot
viewed. were a perfectly diffuse reflector having
unit reflectivity and illuminated by solar radiation
at normal incidence. Using eq. (9) for this calcu-
lation, and setting v=0% R =1 astronomical unit,
n =1, and J, = (W,(T) x Cross-sectional Area of
Sun) /=, we have

STl
W*=;f0 W, (T) 4 d, (10)

Calculations of W* were made taking the sun as a

5800°K blackbody for channel 3 and as a 6000°K
blackbody for channel 5. The complete calibration
is shown schematically in Fig. 47(b).

2.7  Summary of the Calibration

When a certain value of effective radiant emit-
tance W or equivalent blackbody temperature
T s 1s viewed by the radiometer through a given
side with a given radiometer housing temperature
whose value lies within 5.5°C of the electronics
temperature 7, (under which conditions the
variability with' temperature of the voltage-fre-
quency transfer in the oscillator introduces a
negligible error compared to the system inac-
curacy of the experiment) an output signal F_.
results. This is shown diagrammatically in Flgs
10(b) and 10(e).

The calibration for each side of each channel is
carried out for eight parametric values of T ;
hence, it is necessary to interpolate between the
two transfer functions bracketing an actual value
of T, to arrive at the calibration for a given
orbital period.

III. DATA PROCESSING

3.1 Information Flow in the Satellite

The radiation experiment instrumentation is
independent of the television camera system ex-
cept for power, command, certain timing signals



and antennas (Fig. 48).! The output of the five
medium resolution radiometer channels is fed into
five subearrier oscillators. These voltage controlled
oscillators are of the phase shift type with sym-
metric amplifiers in the feedback loops, the gains
of which are controlled by the balanced input
signal. A sixth channel is provided for telemetry
of the wide angle low resolution sensor data, the
University of Wisconsin’s heat balance data, en-
vironmental temperatures, instrumentation can-
ister pressure, and calibration. A mechanical com-
mutator switches resistive sensors in one branch
of a phase shift oscillator. The seventh channel, a
tuning fork oscillator, serves as a reference fre-
quency and timing signal. The outputs from these
seven different channels are summed and the re-
sultant composite signal equalized in a record
amplifier which drives the head of a miniature
tape recorder. An oscillator provides an alter-
nating current bias to the record head and the
signal required for the erase head. For convenience,
erase of the magnetic tape occurs immediately
before recording. The record spectrum extends
from 100 eps to 550 cps. The tape recorder is an
endless-loop, two-speed design running at 0.4 ips
record and 12 ips playback speed. The endless
loop records continuously, day and night, except
during a playback sequence. A hysteresis syn-
chronous motor generates torque in the record mode
through a mylar belt speed reduction. The fourth
subharmonic of the tuning fork oscillator, gen-
erated by flip flops, drives a cam shaft which
activates a bank of micro switches connected to
the five commutated sub-channels of the time-
sharing sixth channel. Each is sampled six seconds
and the fifth includes a group of seven to be sub-
commutated.

Playback is initiated upon command by apply-
ing power to a direct current motor. A magnetized
flywheel generates a frequency proportional to the
motor speed. A frequency discriminator feeds the
error signal to the stabilized power supply of the
motor and closes the servo loop. Playback speed
is essentially constant from 0° to 50° C. A low
flutter and wow of 2.59, peak-to-peak measured
without frequency limitations is achieved by using
precision bearings and ground-in-place shafts
having tolerances of better than 50 parts per
million. A command pulse activates the playback
motor, the playback amplifier, and the 238 Mec
FM telemetry transmitter feeding the duplexer
and antenna.

In order to permit comparison of the low reso-
lution measurements with TV pictures, each TV
shutter action generates a 1.5 second pulse which
is recorded as an amplitude modulation of the
channel seven timing signal. There are nine solar
cells mounted behind narrow slits for north angle
determination. These slits have an opening angle
of close to 180° in planes through the spin axis.
The sun illumination generates pulses as long as

illumination parallel to the spin axis is avoided.
One of these sensors generates a 0.5 second pulse
in addition to the north indicator code so that
spin rate information and a measure of relative
sun position is available. Again, this pulse is
recorded as an amplitude modulation of channel
seven. Reconstruction of the radiation informa-
tion vitally depends on its correlation with ab-
solute time. An accurate but relative timing
signal is provided by the tuning fork oscillator
and a crude one by the sun pulses except when the
satellite is in the earth’s umbra. Absolute time is
transmitted to the satellite and recorded on the
tape as a one-second dropout of channel seven.
The occurrence of this pulse is known within
milliseconds of absolute time.

3.2 Information Flow at the Command and Data
Acquisition Station

Upon interrogation, the 238 Mec carrier is re-
ceived by a 60-foot parabolic antenna, and the
composite signal is recorded on magnetic tape
and, simultaneously, fed to a ‘“Quick-Look” de-
modulator (Fig. 49(a) )."* At the same time, the
envelope of channel 7 and the clipped signal of
channel 4 are graphically recorded. The 8-30
micron ‘“‘events’ on the graphic record show alter-
nately the earth and sky scan intervals as the
satellite spins and progresses along the orbit, and
the channel 7 envelope shows the three distinctive
types of AM pulses impressed on the clock fre-
quency during the record; namely, the sun sensor
pulses, the TV camera pulses, and the ‘‘end-of-
tape” pulse. Auxiliary uses of the radiation data
include determination of the spin axis attitude in
space and the times when television pictures were
taken and recorded in the satellite, to be read out
later over a ground station (Figs. 49(b) and 49(c) ).

The magnetic tapes are routinely mailed every
day to the Aeronomy and Meteorology Division,
GSFC, in Greenbelt, Maryland. The master tape
containing the composite radiation signal is de-
multiplexed, demodulated, and fed into an
analog-to-digital converter (Fig. 50). The pressure
is read separately. The analog-to-digital converter
produces a magnetic “Radiation Data Tape”
made up of 36 bit words suitable for an IBM 7090
computer.

3.3 Information Flow at the Data Reduction
Center

The IBM 7090 computer program requires in-
puts from three sources to produce the ‘““Final
Meteorological Radiation (FMR) Tape.” One
source is the Radiation Data Tape containing
radiation data and satellite environmental para-
meters in digital form. Another source is the
calibration for converting digital information to
meaningful physical units. The third source is the
“Orbital Tape” from the NASA Space Computing
Center containing satellite position and attitude
data. The FMR Tape (in binary form) then is



the basic repository of data from the medium
resolution scanning radiometer. In order to study
and utilize the scanning radiometer data, appro-
priate computer programs must be written to
“talk” to the Final Meteorological Radiation
Tape and provide for printing out data, punching
cards, or producing maps. The make-up of the
IBM 7090 computer program and the format of
the Meteorological Radiation Tape are discussed
in detail in Sections IV and V.

IV. FORMAT OF THE FINAL
METEOROLOGICAL RADIATION
TAPE (BINARY)

TIROS III radiation data will be available on
low density, binary tapes prepared on an IBM
7090 computer. The FMR Tape is the product of
a computer program whose input is the orbital
data, digitized radiation data, and TIROS III
radiometer calibration package. In addition to the
calibrated radiation measurements, the final
meteorological radiation tape also contains geo-
graphical locations associated with the radiation
measurements, orbital data, solar ephemeris, and
satellite temperature. The exact format of these
data is described below, and the purpose of this
section is to emphasize certain features that will
aid programmers in utilizing these data.

Fach orbit of radiation data is treated as a file
which contains a documentation record plus data
records that represent approximately one minute
intervals of time. The documentation record is the
first record of each file and contains 14 data words
whose format is described below. Dref was
defined as the number of days between zero hour
of September 1, 1957, and zero hour of launch
date. Julian time counts zero time as zero hour
at Greenwich on the day of launch, thus launch
time is given in GMT and launch day is zero day,
with succeeding days numbered sequentially.
However, if the satellite life extends beyond
about 100 days, the value of dref is redefined by
adding approximately 100, while the Julian day is
decreased by the same amount.

Each record of data covers approximately one
minute of time, and the data are found in the
decrement (D) and address (A) of each data word.
The record terminates with the end of swath in
progress at 60.0 seconds past the minute specified
in words 1D, 1A, and 2D. In the case of satellite-
earth orientation such that the radiometer con-
tinuously scans the earth for more than one
rotation of the satellite, the record will terminate
with the end of the revolution in progress at
60.0 seconds past the minute specified in words
1D, 1A, and 2D. The End of File gap will be
duplicated at the end of the last file on each Final
Meteorological Radiation Tape.

For each earth viewing swath, the radiation
measured from Channel 1 (6.0 — 6.54), Channel 2
(8 — 124) and Channel 4 (8 — 30u) 1s reported as
the equivalent blackbody temperature, while the
radiation measured from Channel 3 (0.2 — 6.0u)
and Channel 5 (0.55 — 0.75u) is reported in
watts /meter?. For each fifth measurement in a
swath, the point on earth being “viewed’” by the
radiometer is defined in terms of latitude and
longitude. These computations are based on the
best available estimate of satellite attitude.

In order that the user may distinguish between
data from the wall and floor sides of the satellite,
the data words containing the measured energy
are labeled with a 1 in position 19 when the wall
side of the satellite is viewing the earth. The user
should realize that if the signal from the satellite
becomes noisy, swath sizes are abnormal, and
the data can be labeled and located incorrectly.
In order to flag abnormal data, minus signs are
inserted for the following three reasons:

1. A measurement within a swath whose digital
response falls below the arbitrarily defined thresh-
old between earth and space. (The end of a
swath is arbitrarily defined by three consecutive
measurements falling below the threshold.)

2. An entire swath is labeled with minus signs
when the observed swath size falls outside of the
theoretical swath size +259,. The theoretically
computed swath size is based on the best available
estimate of satellite attitude, height, and spin rate.

3. The entire swath is labeled with minus signs
when this swath is the last swath in the closed
mode where the radiometer has been continuously
scanning the earth for more than one spin revo-
lution.

At the end of each earth viewing swath, two
additional data words contain the end of swath
code, the minimum nadir angle of the radiometer
optical axis occurring in this swath, and the
latitude and longitude of the point on earth being
“viewed”’ by the radiometer when the minimum
nadir angle occurred.

The block of data from words 6D to 24A will
be repeated, thus defining every fifth measure-
ment in a swath. The address of the third word
in the last response of a swath will contain
010101010101010 to signal end of record. A “look
ahead’” feature has been incorporated into
TIROS III data reduction, and if the End of
Tape signal occurs within an earth-viewing swath,
that entire swath is discarded.

Occasionally, dropouts are encountered and the
corresponding data records contain no radiation
data. This event is relatively rare in TIROS III
data, but in such cases the radiation data record
contains only five words (1D to 5A) which docu-
ment the record with respect to time. In such
records, the datum in the address of the third
word (T,) is destroyed by the End of Record Code.



FORMAT OF FINAL METEOROLOGICAL RADIATION TAPE

Documentation Record

Quantity

Units

Remarks

Seconds. - .. ...~ I
Sateilite Spin Rate__ .-
Frequency__ . . --- R
Orbit No.. _.
Station Code. ... ... .-

Z Minute____. -
Z Seconds_ - ____._.--
Julian Day.____ -
Z Hour__._._. -

Deg/Sec_;_. I
36, 72, 144 .

Number of days between zero hour of Sept. 1, 1957, and zero
hour of launch day.

Date of Interrogation expressed as a packed word, i.e., July 12,
1961 would be (071261)10 or (071475)s. These numbers are
shifted to extreme right side of the data word.

Start time of this file of radiation data.

Time of Interrogation, i.e., end time of this file of radiation data.

Satellite spin rate (accuracy about 0.01 deg/sec)

Data sampling frequency (cycles of a 550 cps tuning fork)

Orbit No. at time of Interrogation

Code defining ground station (‘1" for Wallops Igland, Va.,
42" San Nicholas Island, Calif.)

Format of FMR TAPE—N® Record

Latitude. . - .. .- ---.--
Longitude . _________ ...
Latitude . . ... .. .-~
Longitude . __._____..-__.__

Nadir Angle_ . ... .-
Azimuth Angle_ . __ ___.___

Degrees._
Degrees. - .- .. _._.-

Degrees K. __ .. ___
Degrees K___.__.__.
Kilometers
Degrees_________.__--

Degrees. - .- _.----
Degrees____.______--
Degrees. ... ... -
Degrees_ ________._.___

Degrees. - - -« .-----

Degrees._ ... ------

Degrees K___
Degrees K _____
Watts/m2_ _ _ . ___
Degrees K_ _ _
Watts/m?_ _

Degrees K. .
Watts/m2___ _______
Degrees K__ ________
Degrees K. -
Watts/m?_
Degrees K_ ___
Watts/m?_ . -

Degrees K. -
Degrees K____ -
Watts/m?__ . _______
Degrees K. __
Watts/m2___ . i
Degrees K. .. . __..
Degrees K. ____ . .
Watts/m2_ __ _. i
Degrees K____ .
Watts/m?._ _ -
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Julian Day
Z time in day specified in word 1D

Greenwich hour angle and declination of sun at time specified in
words 1D, 1A, and 2D. 90° are added to declination to yield
positive numbers.

Reference temperature of the medium resolution radiometer.

Reference temperature of maindeck electronics.

Height of satellite at time specified in words 1D, 1A, and 2D.

Latitude of subsateliite point at time specified in words 1D, 14,
2D. 90° are added to all latitudes to yield positive numbers.

Longitude of subsatellite point at time specified in words 1D, 1A,
2D. Longitudes are reported as 0 to 360°, with west being
positive.

Seconds past time specified in words 1D, 14, 2D when first
earth viewing response is detected, and every fifth reaponse
thereafter.

Latitude of subsatellite point at time specified in words 1D, 1A,
2D, 6D. 90° are added to all latitudes to yield positive
numbers.

Longitude of subsatellite point at time specified in words 1D,
1A, 2D, 6D. Longitudes are reported ag 0 to 360°, with west
being positive.

Latitude of point on earth being ‘'viewed” by radiometer at
time specified in words 1D, 14, 2D, 6D. 90° are added to all
latitudes to yield positive numbers.

Longitude of point on earth being ‘‘viewed” by radiometer at
time specified in words 1D, 1A, 2D, 6D. Longitudes are re-
ported as 0 to 360°, with west being positive.

Nadir angle of optic axis from radiometer to point specified in
words 7A, 8D.

Azimuth angle of optic axis from radiometer to point specified
in word 7A, 8D. This angle is measured clockwise and ex-
pressed as a positive number.

Measurement by each of the five medium resolution channels
at time apecified in 1D, 1A, 2D, 6D when radiometer is
“viewing” point on earth specified in words 74, 8D.

The data sampie immediately following the measurement re-
corded in words 10D-12A.

The data sample immediately following the measurement re-
corded in words 13D-15A.

The data sample immediately following the measurement re-
corded in words 16D-18A.

The data sample immediately following the measurement re-
corded in words 19D-21A.




The block of data from words 6D to 24A will be repeated, thus defining every fifth point in a swath.
The address of the third word in the last response of the last swath of each record will confain
010101010101010 to signal the end of record. Each time the swath terminates, two words (N and N+1)
will follow the last “‘earth viewing” response with the following format:

‘Word No. Quantity Units Scaling Remarks

ND____ __________.. Code _ . _______._._____. JR0000BESSUE 55 NN Code indicating end of swath.

NA ... Nadir Angle. ... _________ Degrees..____.______| B=29 The minimum nadir angle that occurred in the previously de-
fined swath

(IN+U)D_ . . Latitude _ . ______________ Degrees. . _.________ B=11 Latitude of point on earth being ‘“ viewed” by radiometer when
the minimum nadir angle occurred. 90° are added to all
latitudes to yield positive numbers.

(N+DA_ .. Longitude_ _______________ Degrees_ .. _____.__ B =29 Longitude of point on earth being ‘‘viewed” by radiometer
when minimum nadir angle occurred. Longitudes are reported
as 0 to 360°, with west being positive.

The End-of-File code word appearing on TIROS II FMR Tapes has been omitted from the TIROS
IIT FMR Tapes. A look-ahead feature was incorporated such that the last record terminates with the
end of the last swath prior to the EOT signal. A flow diagram to aid in interpreting this Format in shown
in Fig. 51. It is seen that the Format is analogous to four “nested loops” (in programming langauge),
Le., groups of five responses, entire swaths, one-minute records, and files. It is pointed out that a
particular swath (and, hence, a particular record and a particular file) can end either on the “anchor
data response” or on any of the four following non-geographically located data responses and that
Fig. 51 merely illustrates one possible combination of ending responses.

V. IBM 7090 COMPUTER
FLOW DIAGRAM

The Final Meteorological Radiation Tape, de-
scribed in the previous section, is prepared with
an IBM 7090 computer program whose input con-
sists of orbital data, digital radiation data, and
TIROS III radiometer calibration package. The
flow chart shown in Fig. 52 outlines the logical
steps in this program and thus gives some insight
into the mechanics of preparing these tapes. The
flow chart has been greatly condensed since it is
impossible to present a detailed flow chart within
the space limitations of this publication.

The first phase of this program sets up the
documentation data and then reads the entire file
of radiation data to compute the start time from
the end-of-tape time and the data sampling fre-
quency. Given the starting and ending times, the
program then searches the orbital tape to find
orbital data (subsatellite point, height, nadir
angle, right ascension, and declination) covering
the same time interval. These data are then ar-
ranged in tables as a function of time so that
interpolation subroutines can be used in the
second phase to obtain values of the orbital
characteristics for any specified time.

At this point, an optional feature allows the
program to accept the attitude data from the
orbital tape, or an alternate estimate of the
attitude from a second documentation card. If the
alternate attitude is accepted, the nadir angles
are recomputed.

The second phase of the program reduces the
digitized radiation data into useful meteorological
data. This begins with a detailed examination of

the radiation data to distinguish between earth
and space viewed data. This distinction is based
on an arbitrarily defined threshold value applied
to channel 2. Both sensors are assumed to be
viewing space when the measured radiation falls
below the threshold value, and one sensor is
viewing the earth when the measured radiation
exceeds the threshold value. The end of swath is
arbitrarily defined as three consecutive space-
viewed measurements,

For each earth-viewing swath, the program pro-
ceeds to determine which sensor is viewing the
earth, computes the latitude and longitude of the
point on earth being ‘‘viewed” by the radiometer
for each fifth measurement in the swath; and
converts the digitized data into radiation units for
each measurement in the swath. The data words
containing radiation measurements contain a 1 in
posiflion 19 when the wall sensor is viewing the
earth.

Each record on the final meteorological radia-
tion tape covers approximately one minute of time
and terminates with the end of swath in progress
at 60.0 seconds past the minute. When the end
of tape is encountered, the program writes the
last data record and reinitializes in preparation
for the next orbit of radiation data.

VI. PRE-LAUNCH AND POST-LAUNCH
OBSERVATIONS
AND DEVELOPMENTS

6.1 Pre-Launch Degradation of Channels 3 and 5

Between the original calibration and the launch
of the satellite, several ‘“‘check-of-calibration’’



measurements of all channels were made. There
is evidence from these measurements that channel
3 suffered a progressive decrease in sensitivity.

On the other hand, the check-of-calibration
data do not indicate a similar decrease in the
sensitivity of channel 5 before launch (although
such data for another radiometer which was ex-
posed to ambient conditions for several months
following its original calibration did show a pro-
gressive sensitivity decrease for channel 5 as well
as for channel 3).

It was not felt that the check-of-calibration data
were of sufficient quantity to justify revising com-
pletely the original calibration of channel 3 (or
channel 5). Hence, the original calibration is shown
in this Manual and will be used to produce the
FMR Tapes. Evidence of the differential pre-
launch sensitivity decrease of channel 3 over
channel 5, however, can be seen in the early-orbit
values of (W« W¥)/(W;.W?) discussed in para-
graph 6.2. )

Tests are under way in the laboratory attempt-
ing to determine the cause of the observed pre-
launch decrease in sensitivity of the solar channels,
but, as of this writing, no conclusive results are
available.

6.2 Post-Launch Degradation of Channels 1, 2,
Land b

From about orbit 118 on, channel 1 displayed
an extremely high space-viewed level with the
signal initially going in a negative sense from this
level followed by a reversal to the positive sense
when the wall optic scanned the earth. The signal
remained always positive with respect to the
space-viewed level when the floor side scanned the
earth. This degradation pattern became more pro-
nounced with increasing time in the life of the
satellite. From about orbit 130 on, channel 4 dis-
played the same form of degradation, and from
about orbit 875 on, channel 2 also degraded
steadily. Histories of the differences between the
original calibration space-viewed levels and the
space-viewed levels telemetered while in orbit
are shown in Figs. 53 through 55 for the three
thermal channels.

The ratio of (W/W*) measured by channel 5 to
(W/W*) measured by channel 8, viz. (Ws-W3)/
W+ W), when viewing the same scan spot on
earth, yields a comparison of reflectance of solar
radiation as measured by the two solar channels.
Theoretically, the two reflectance measurements
should be substantially the same. A history of the
ratio (W5« W¥) /(W3- W#) calculated from many
measurements during the life of TIROS III is
shown in Fig. 56. It is seen that in the early orbits
the ratio is greater than the expected value of
unity. The pre-launch decrease in sensitivity dis-
cussed in paragraph 6.1 could account for this
difference. It is further seen that, although the
scatter among the individual data points is large,

there is a progressive decrease in the ratio through-
out the entire life of the satellite. That this was
indeed a decrease in sensitivity of channel 5 (and
not an increase in sensitivity of channel 3) was
evidenced by the general decrease over many days
of the maximum channel 5 signals observed
visually on analog records of a large number of
orbits. However, it is difficult to assign absolute
values to the channel 5 degradation because it is
not known what changes, if any, channel 3 was
undergoing at the same time. Only when the FMR
Tapes are available can absolute values possibly
be determined by means of long-term broad-scale
statistical averages using computer techniques.

An investigation of the degradation problem
that has occurred in similar ways in both TIROS 11
and TIROS III continues, but as of this printing,
no definite conelusions as to its cause have been
reached. Furthermore, the analysis of such a
situation turns out to be rather complex, and no
satisfactory model has been found which would
lead to a possible method of correcting the flight
data for this effect.

6.3 Estimate of the Accuracy of the Data

Inaccuracies in the data are caused by such
effects as wow and flutter in the magnetic tape,
noise, drift of T, from T, uncertainties in the
original calibration (due to such effects as assum-
ing that the spectral absorptivity of the bolo-
meters is flat over all wavelengths), and, of course,
loss of sensitivity and degradation of the various
channels after the original calibration.

The estimates of accuracy given below apply to
the mid-range of target Intensities. As can be
seen from the figures of Fs. vs. T, the accuracy
of the thermal channels suffers at very low target
temperatures.

Channel 1

The estimated relative accuracy of T, measure-
ments is +2°K and the estimated absolute ac-
curacy is +5°K up to orbit 118, after which
degradation becomes appreciable.

Channel 2

The estimated relative accuracy of T 5z measure-
ments is +2°K and the estimated absolute ac-
curacy is +4°K up to orbit 875, after which
degradation becomes appreciable.

Channel 3

The estimated relative accuracy of W measure-
ments is £20 w/m? Because of the pre-launch
decrease in sensitivity described in paragraph
6.1 and because the mechanism causing the post-
Jaunch progressive change in the ratio of solar
channel measurements is not fully understood, no
estimates of absolute accuracy are given.

Channel 4 .
The estimated relative accuracy of T'z; measure-



ments is +2°K and the estimated absolute ac-
curacy is +4°K up to orbit 130, after which
degradation becomes appreciable.

Channel 5

The estimated relative accuracy of W measure-
ments is +3 w/m? Because the mechanism
causing the post- launch progressive change in the
ratio of solar channel measurements is not fully
understood, estimates of absolute accuracy are
not given, except that immediately after launch
it is estimated that the absolute accuracy was
+10 w/m?.

VII. CONCLUSIONS

The greatest uncertainty in the radiation
measurements is due to the apparent shift in the
zero radiation level. The error introduced by not
correcting for this effect is probably largest at
low equivalent blackbody temperatures, becoming
smaller with increasing temperature. The signifi-
cance of the data is doubtful beyond orbit 118 for
channel 1, orbit 130 for channel 4, and orbit 875
for channel 2, due to the degradations which de-
veloped in the outputs of these channels after
launch.

The absolute measurements by channel 5 im-
mediately after launch are probably valid within
+10 w/m?. Otherwise, because of the as yet
unexplained degradation mechanisms which oper-
ated both before and after the satellite went into
orbit, the absolute measurements from the two
solar channels are probably low. However, the
relative measurements from the solar channels
are still valid for such purposes as the contrast
mapping of cloud systems.
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TABLE II—Filter and lens materials

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

lium- | Pure

Lens 1 Germanium immersion lens | Germanium with both sur- | Synthetic Barium Fluoride | KRS-5 (Thal quartz (SiO3)
detector, first surface faces coated with pure (BaF;} with no coatings. bromo-iodide) with with no coatings.
coated with pure ZpS of ZnS of A/4 optical thick- no coatings.'®
A/4 optical thickness at ness at 10u.
6.3u.

Lens 2 Germanium with both sur- | Germanium with both sur- | Synthetic Sapphire (Al303) |[None________________ Synthetic Sapphire
faces coated with pure faces coated with pure with no coatings. (Al 203) with no
ZnS of A/4 optical thick- ZnS of A/4 optical thick- coatings.
ness at 6.3u. neas at 10u.

Lens 8 Germanium with both sur- [None_. . ..._.____._..______[None ___ ___._..___ _{None________________ None_ ... __ _________
faces coated with pure
ZnS of M4 optical thick-
ness at 6.3u.

Filter 1 Narrow band, OCLI, inter- | Indium Antimonide (InSb), (None.__ .. ____ - .---.] Indium Antimonide | Narrow band Infrared
ference type centered at both surfaces coated with (InSb) coated with Industries Type
6.3 with 14 multilayers, pure ZnpS of A/4 optical })ure ZpS, one sur- 259,011,513,
both surfaces of Al,O3 thickness at 10u. ace with A\/4 op-
substrate and alternate tical thickness at
films of Ge and SiO. 13x and other at

20u.
Filter 2 None___ ... .wwww---e--__| Argenic Trisulfide (As;S3) None___. ___________ None._ __._ ... ___..._. Narrow band Infrared
glass, uncoated 0.5 mm Industries Type
plane piece.1? 259,011,608.
Filter 3 None.._...._ .. ____.._._-- None.__...... --.oco._None___. .______.______|Nome_________.___... Infrared Industries
chance glass ON-20
1/8 inch thick.
TABLE III—Effective spectral response, Channel 1 TABLE V.—Effective spectral response, channel 3
A (29 A N A 2N
(Microns) (Microns} (Microns)
5.7 0 .25 .138 2.81 .700
5.8 .006 .26 283 3.02 .699
5.9 .028 .28 366 3.50 .738
6.0 101 .31 474 4.10 122
6.1 .187 41 604 4.22 .688
6.2 251 b1 638 4.34 714
6.3 267 .61 571 4.46 702
6.4 .283 71 .508 4.58 .693
6.6 .231 .81 430 4.70 .666
6.6 .105 91 461 4.82 .632
6.7 .035 1.01 515 4.94 597
6.8 011 1.21 .596 5.06 558
6.9 .006 1.41 620 5.30 456
7.0 0 1.61 645 5.66 .304
1.81 663 6.14 .085
1.91 677 6.26 .068
2.01 686 6.40 .042
2.21 697 6.60 .026
2.41 .700 6.80 010
2.61 707 6.82 0
TABLE VI.—Effective spectral response, channel 4
TABLE IV.—Effective spectral response, channel 2
A N 1y L3N Y ¢,
Microns Microns Micr
N N R N (Microns) ( ) ( ons)
(Microns) (Microns)
7.4 0 16.6 610 26.8 .320
7.6 .046 17.0 .600 27.2 .300
7.07 .0 13.33 .106 8.0 .268 17.2 687 27.6 277
7.41 .068 13.79 .036 8.6 .361 18.0 .666 27.8 .233
7.69 .168 14.28 .008 8.8 .388 19.0 637 28.0 1956
8.00 .284 14.81 .009 9.2 425 19.2 .630 28.4 200
8.83 .338 16.38 .024 9.8 455 20.0 5621 28.8 .190
8.70 4056 16.00 .088 10.2 477 21.0 485 29.0 179
9.09 .464 16.67 .099 11.2 623 22.0 439 29.4 .178
9.52 487 17.39 .081 12.0 .644 23.0 .402 29.8 .162
10.00 473 18.18 .057 12.8 659 24.0 .368 30.0 151
10.63 473 19.05 .040 13.6 584 24.2 349 30.4 .141
11.11 .430 20.00 .024 14.0 583 25.0 351 31.2 .100
11.76 358 21.05 012 14.4 644 25.4 .362 32.0 .056
12.60 267 22.22 .003 16.4 .625 26.2 364 32.4 .021
12.90 .201 25.00 0 16.2 614 26.4 350 32.6 0
664272 O - 62 - 2 11



TABLE VII.—Effective speciral response, channel 5 TABLE IX—T g vs. W, Channel 2

A ®x A o\ Tpg (°K) W (watts/m?)
(Microns) (Microns)
170 2.48
.800 0 190 5.33
475 0 1.100 002 210 10.10
.600 021 1.130 011 230 17.37
525 106 1.200 .006 250 27.65
550 287 1.400 010 270 41.38
575 284 1.600 .029 290 58.89
600 200 1.800 .050 310 80.41
625 228 2.000 .062 330 106.07
650 266 2.200 051 350 1356.94
675 256 2.400 .056 370 170.00
700 174 2.600 .063
725 190 2.700 067
750 095 2.800 005
715 009 2.900 0

_ TABLE X Tgg vs. W, Channel 4
TABLE VIII—Tggp vs. W, Channel 1

Tgp (°K) W (watts/m?)
Tgp °K) W (watts/m?)

170 14.55
180 0.018 5?8 3(5).(1)?
199 0.061 210 40.01
218 0.164 230 89.66
ggg g'%g 270 114.77
275 1.419 290 15057
294 2.422 310 191.93
313 3.876 330 238.76
332 5.878 350 290.92
. 370 348.22

351 8.524

370 11.902

TaBLE XI.—Changes in Blackbody Temperature and
Effective Radiant Emitiance Due to Differences
of Tc From Tg

Channel Tg(°C) T(°C) Side Fgc(cps) Tpg(°K) ATgg W(w/m2) W/w» AW/ WH
1 0 0 Floor 130 247.5 0
5 0 130.2 248.0 0.5
5 5 130.2 245.5 0
0 5 130 245.0 0.5
0 0 Wall 130 254.3 0
5 0 130.2 254.8 0.5
5 5 130.2 246.1 0
0 5 130 245.5 0.6
Av, 0.52
2 0 0 Floor 185 235.5 0
5 0 185.3 236.3 0.8
5 5 185.3 233.1 0
0 5 185 232.4 0.7
0 0 Wall 185 239.2 0
5 0 185.3 240.0 0.8
5 5 185.3 234.8 0
0 5 185 233.9 0.9
Av. 0.8
3 0 0 Floor 248 232.5 .304
5 0 248.1 233.5 306 002
5 5 248.1 207 271
0 5 248 206 .270 001
0 0 Wall 248 283 .371
5 0 248.1 284.5 .372 001
5 5 248.1 230 .301 0
0 5 248 228 .298 .003
Av. .002
4 0 0 Floor 325 263.9 0
5 0 324.8 264.3 0.4
5 5 324.8 258.83 0
0 5 325 259.25 0.42
0 0 Wall 325 263.9 0
5 0 324.8 264.3 0.4
5 5 324.8 256.83 0
0 5 325 256.75 0.42
Av. 0.41
5 0 0 Floor 326 71.4 .657 0
5 0 385.9 71.2 656 001
5 5 385.9 63.2 .582
0 5 386 63.4 .584 .002
0 0 Wall 386 75.6 .696
5 0 385.9 75.3 .693 .003
5 5 385.9 65.8 .606
0 5 386 66.0 .608 .002
Av. .002
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‘pSuapeaem SN g [PuueyD) Jo asuodsax Tendads 2A10342 YL

4

e

4/

L.
ETehe AT

~

D

N

D
~

D
\

~

[«
&

-
2

q
[\

2

q
3

XZ ‘?‘ff'/ OXSY| 7 b L drdS| Ao S7 K

N
o

15



91

T~
3

4

LA

YV

AT} Pods & é

3

AFFeT 76 PrREcTICH,

(V.30

Ao

3 4 e ‘f’

AN

b4

es)

7

VELLAQTH | X (e

’A/;L/l{/l/! \#3 (,ée,_s C/c/p,p(' v Drl<py C’/;d/-(tc/?;}sf:'

Figure 4—The cffective spectral response of Channel 3 versus wavelength.




L1

&6 Y
’T' / \
N s / A\
\y ) \
vy / \
AN
NI \
% \M
It / .
M-30
& \
h \
3]
& l A
S 2o £E A7 MACe L B E
' CodsTAar|r VAivE (oved
\ 7—\5’5/4, F&;i/udmof
\ o R FYATN)
N
N
R
AV}
N
) \
AT .
E /p % 2o 2K Jlo s o

WAWVL &2V A 4

(’/744///[4 #1(;: /fe); (?/AO/Q/) VRS /0"‘5/‘7) eharac 7’("//5 7//'C 5)

Figure 5—The effective spectral responsc of Channel 4 versus wavelength.




81

38

—y
1
w'\
g -y
Q
g [
m -
oY,

s
~
%‘
(N
S
A XA
N
(‘_)
Y
X-os - =
\ /]
/
R L N
- CF xg Az A5 2.0 A L0
(YA A EL #ﬁ'( /C—‘/’Lt')l fen<| ChHI ,p':J r vp'/"/ﬂ /)d’/d."%flzsf/(- 3
WAVELEN &4 i ).14“

Figure 6—The eflective spectral response of Channel 5 versus wavelength.




‘amieraduwd) Apoqyde[q jud[eamnba snsIsA [ [duuRyD) JO IDUBNIWS JURIPRL JATDIYS Y [ —/ 24nftf

7 # Y ViV

)’ FoAks thws | 2ivkraddy  [7ardoz A7
o e vl s

i

f;/_dq,/ .

—t—

RZER TeE E700)

?I%

CoTAS

Y
5

19



0%

356
N "
~
WV
N
™~ 20 /
“ < J L7 /
A
; -
N\ /

F56 ~
N\ 3\) /
X
S /
o
@ I\IG

7176

4 Ao 40 4To Ao 00 /40 Y o /60 /5
DY ANNE Y #2
LXrEcTivE | PADIAR T  EA1s7 74008 Iy (4/,2)

Figure 8—The effective radiant emittance of Channel 2 versus equivalent blackbody temperature.



iy [

g
\

/f.( 4 TQL / oo{’

Ao sy s 2

2 4N /

[ZaX 424

846! ct odlu

i) . 40 /90 /30 X0 ol v/ Joo Jiso
ceHwwvEL WA

LEFAECTAVE | FPADIAL Tl EM/TT AN E W S n 3

13

Figure 9—The effective radiant emittance of Channel 4 versus equivalent blackbody temperature.




85

v _ SATELLITE
| \\
| \\\\
| AN FIVE - CHANNEL VOLTAGE CONTROLLED
| WAL SCANNING RADIOMETER | Veso
| N Q (Te) (Te)
NS
| (FLOOR) NN
“—

OUTER SPACE

N
VraD }73
7~ // ?\’00?*
A
Z Z // [
e = —_ /
W (or) Tgg

(b)

SC 30Fsc | DEMODU-
OSCILLATOR _..l I._. LATOR

VRaD

(c)

GROUND STATION

.
I

(d)

Frgure 10—(a) Schematic representation of transfer functions associated with instrumentation in the satellite and
at the ground station. (6) Three-dimensional representation of the response of the five-channel scanning radiometer.

(¢} The response of the voltage controlled oscillator shown as a

(d) Conversion from subcarrier frequency to digital number.

parametric function of the electronics temperature Tj.
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Figure 47— a. Calibration of the thermal Channels 1, 2, and +.
/b, Calibration of the visible Channels 3 and 3.
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Figure 48— Block diagram of the radiation experiment in the satellite.
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Figure 49—Block diagram of information flow at a data acquisition station including auxiliary uses of the radiation data.
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Figure 51— Diagram for interpretation of I'MR tape format.
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Figure 52—(a, b, ¢, & d 1—Flow diagram for the IBN 7090 computer program used in reducing the radiation data.
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Frigure 54— Ditference between tlight and calibrated space level vs. orbit number. Channel 2.
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Figure 536—Ratio of W; W2 to W3 W% vs. orbit number.







